Iterative algorithms for determining optimal solution set of interval linear fractional programming problem
نویسندگان
چکیده
Determining the optimal solution (OS) set of interval linear fractional programming (ILFP) models is generally an NP-hard problem. Few methods have been proposed in this field which only able to obtain value objective function. Thus, there a need for appropriate method determine OS ILFP model. In paper, we introduce three algorithms ILFP. first and second algorithms, using definition strong weak feasible solutions, function has transformed on largest region (LFR) These two one point as OS. Since model, seek algorithm, where time obtained by solving sub-models. Hence, transform model into pessimistic optimistic sub-models, smallest (SFR) other LFR. We add constraints ensure that feasible. Then, modified (PMOM) algorithm. each PMOM solved separately. The OSs from these give so Note union will be more complete set.
منابع مشابه
The optimal solution set of the interval linear programming problems
Determining the set of all optimal solutions of a linear program with interval data is one of the main problems discussed in interval optimization. We review two methods based on duality in linear programming, which are used to approximate the optimal set. Additionally, another decomposition method based on complementary slackness is proposed. This method provides the exact description of the o...
متن کاملA Suggested Approach for Stochastic Interval-Valued Linear Fractional Programming problem
In this paper, we considered a Stochastic Interval-Valued Linear Fractional Programming problem(SIVLFP). In this problem, the coefficients and scalars in the objective function are fractional-interval, and technological coefficients and the quantities on the right side of the constraints were random variables with the specific distribution. Here we changed a Stochastic Interval-Valued Fractiona...
متن کاملGeneralized linear fractional programming under interval uncertainty
Data in many real-life engineering and economical problems suffer from inexactness. Herein we assume that we are given some intervals in which the data can simultaneously and independently perturb. We consider a generalized linear fractional programming problem with interval data and present an efficient method for computing the range of optimal values. The method reduces the problem to solving...
متن کاملMathematical solution of multilevel fractional programming problem with fuzzy goal programming approach
In this paper, we show a procedure for solving multilevel fractional programming problems in a large hierarchical decentralized organization using fuzzy goal programming approach. In the proposed method, the tolerance membership functions for the fuzzily described numerator and denominator part of the objective functions of all levels as well as the control vectors of the higher level decision ...
متن کاملDetermining the Optimal Value Bounds of the Objective Function in Interval Quadratic Programming Problem with Unrestricted Variables in Sign
In the most real-world applications, the parameters of the problem are not well understood. This is caused the problem data to be uncertain and indicated with intervals. Interval mathematical models include interval linear programming and interval nonlinear programming problems.A model of interval nonlinear programming problems for decision making based on uncertainty is interval quadratic prog...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Filomat
سال: 2022
ISSN: ['2406-0933', '0354-5180']
DOI: https://doi.org/10.2298/fil2207237s